This is the complete wrong way to do this. I say this as someone who does work in this area of leveraging LLMs to a limited degree in trading.
LLMs are naive, easily convinced, and myopic. They're also non-deterministic. We have no way of knowing if you ran this little experiment 10 times whether they'd all pick something else. This is a scattershot + luck.
The RIGHT way to do this is to first solve the underlying problem deterministically. That is, you first write your trading algorithm that's been thoroughly tested. THEN you can surface metadata to LLMs and say things along the lines of "given this data + data you pull from the web", make your trade decision for this time period and provide justification.
Honestly, adding LLMs directly to any trading pipeline just adds non-useful non-deterministic behavior.
The main value is speed of wiring up something like sentiment analysis as a value add or algorithmic supplement. Even this should be done using proper ML but I see the most value in using LLMs to shortcut ML things that would require time/money/compute. Trading value now for value later (the ML algorithm would ultimately run cheaper long-run but take longer to get into prod).
This experiment, like most "I used AI to trade" blogs are completely naive in their approach. They're taking the lowest possible hanging fruit. Worst still when those results are the rising tide lifting all boats.
Edit (was a bit harsh) This experiment is an example of the kind of embarrassingly obvious things people try with LLMs without understanding the domain and writing it up. To an outsider it can sound exciting. To an insider it's like seeing a new story "LLMs are designing new CPUs!". No they're not. A more useful bit of research would be to control for the various variables (sector exposure etc) and then run it 10_000 times and report back on how LLM A skews towards always buying tech and LLM B skews towards always recommending safe stocks.
Alternatively, if they showed the LLM taking a step back and saying "ah, let me design this quant algo to select the best stocks" -- and then succeeding -- I'd be impressed. I'd also know that it was learned from every quant that had AI double check their calculations/models/python.. but that's a different point.
LLMs are naive, easily convinced, and myopic. They're also non-deterministic. We have no way of knowing if you ran this little experiment 10 times whether they'd all pick something else. This is a scattershot + luck.
The RIGHT way to do this is to first solve the underlying problem deterministically. That is, you first write your trading algorithm that's been thoroughly tested. THEN you can surface metadata to LLMs and say things along the lines of "given this data + data you pull from the web", make your trade decision for this time period and provide justification.
Honestly, adding LLMs directly to any trading pipeline just adds non-useful non-deterministic behavior.
The main value is speed of wiring up something like sentiment analysis as a value add or algorithmic supplement. Even this should be done using proper ML but I see the most value in using LLMs to shortcut ML things that would require time/money/compute. Trading value now for value later (the ML algorithm would ultimately run cheaper long-run but take longer to get into prod).
This experiment, like most "I used AI to trade" blogs are completely naive in their approach. They're taking the lowest possible hanging fruit. Worst still when those results are the rising tide lifting all boats.
Edit (was a bit harsh) This experiment is an example of the kind of embarrassingly obvious things people try with LLMs without understanding the domain and writing it up. To an outsider it can sound exciting. To an insider it's like seeing a new story "LLMs are designing new CPUs!". No they're not. A more useful bit of research would be to control for the various variables (sector exposure etc) and then run it 10_000 times and report back on how LLM A skews towards always buying tech and LLM B skews towards always recommending safe stocks.
Alternatively, if they showed the LLM taking a step back and saying "ah, let me design this quant algo to select the best stocks" -- and then succeeding -- I'd be impressed. I'd also know that it was learned from every quant that had AI double check their calculations/models/python.. but that's a different point.